スペック社マグネットポンプ 製品ラインナップページへ

マグネットポンプとは何か?

マグネットポンプを理解する上で、これまでポンプ構造の主流であった”メカニカルシールポンプ”と対比するとより分かりやすくなります。

マグネットポンプの原理1        マグネットポンプの原理2

マグネットポンプ                     メカニカルシールポンプ

 

マグネットポンプはCanで液体を封じ込める

 

マグネットポンプは上の通り、モーターシャフトとポンプシャフトの間に、外部マグネットと内部マグネット、そして媒体を完全に受け止めるCanと呼ばれるものが入っています。

モーターシャフトにより回転された外部マグネットはCan内部にある内部マグネットを磁力により回転させます。Can部により媒体は完全に密閉されていますので、外に漏れる事がありません。内部マグネットと繋がったポンプシャフトが回転しその先に付いているインペラーを回転させる事で、媒体は圧力を得ながら吐き出されていきます。

 

モーターポンプの変遷を見ていきますと、初期はメカニカルシールポンプと言われるタイプが主流でした。

メカニカルシールでポンプヘッドから媒体が漏れないようにシールしながら回転しますが、これでは完全に漏れを封じ込めることもできませんでした。

またメカニカルシールの経年劣化による漏れ、マイナス帯や高い温度帯の媒体では使用できないという問題点がありました。

そこで登場したのがマグネットポンプです。下記はマグネットポンプとメカニカルシールポンプの比較になります。

 

マグネットポンプ メカニカルシール
価格 平均的 低価格
シール性 マグネットカップリング構造のため漏れなし

メンテナンス不要

耐用時間8000時間

それ以上の使用は漏れる可能性があり交換が必要

温度帯 高温・低温使用に対応

-100℃~350℃

限られた温度帯

最高140℃

 

マグネットポンプの3大メリット

スペック社の主力製品はこのマグネットポンプです。マグネットポンプの3大メリットは

・媒体が漏れない 

・メンテナンスフリー

・使用温度帯の幅が広い

以上になります。

現在ではメカニカルシール型ポンプを抑えて、このマグネットポンプが様々な分野で主流となっています。

スペック社の本社である欧米でいち早くこのマグネットポンプが採用される中、日本市場において私たちは他社メーカーに先駆けて、このドイツ製のマグネットポンプを様々な分野に供給し続けてきました。 

特にこのマグネットポンプの3大メリットの中でも、スペック社のマグネットポンプだけが持つ特徴があり、これにより様々な分野においてスペックのマグネットポンプを求めるユーザーが増え続けている理由になります。

スペック社マグネットポンプ 製品ラインナップページへ

     

 

 

他社にはないスペック・マグネットポンプの特徴

1.高圧力・・カスケードポンプに強いスペックポンプは他社メーカーにはない高圧力を実現

2.-100℃から+350℃までの幅広い使用温度帯

・・ステンレス製のポンプ材質により様々な媒体の極低温から高温までカバー

3. コンパクトサイズ・・パワフルな流量・圧力に関わらずコンパクト設計

 

マグネットポンプは何故 漏れないのか?

上記に書いたように、マグネットポンプのモーターとポンプヘッドはCanと呼ばれるパーツによって完全に分けられています。Canの中には内部マグネットがあり、これはモーターに接続されている外部マグネットによりCanを隔てた磁力により回転します。

外部マグネットと内部マグネットが脱調(磁石同士が引き合わなくなる事)することなく継続的に回転するために、それぞれのポンプサイズに応じて適切な磁石のトルクが用いられています。

 

マグネットポンプはメンテナンス要らずの理由

マグネットポンプはメカニカルシールポンプのようにメカニカルシール摩耗などの寿命はないため、メンテンナンスフリー(メンテンス要らず)のポンプと言われています。

仮にポンプヘッド側で何らかの故障があった場合でも、簡単なポンプヘッドのカセット着脱式ですので複雑な分解・組み立ては必要ございません。

 

 

 

ポンプサイズとマグネットトルク

ポンプのサイズ(能力)と使用されるマグネットのトルクは組み合わせで決められています。

例えばスペックポンプのカスケードタイプでは媒体の最高使用粘度は100cpとしていますが、これもマグネットのトルクと関係があります。

モーターと接続されている外部マグネットとポンプヘッド側にある内部マグネットがそれぞれ磁力で引き合う事でマグネットポンプは回転していますが、100CPを超えるような高粘度の媒体を回そうとすれば、マグネットカップリングは脱調してしまいます。つまり外部マグネットと内部マグネット同士が外れてしまいます。

脱調しないために、より強いトルクの磁石をそれぞれのマグネットに使用するという考え方もありますが、ポンプサイズの制限もあるため、100CPを最高とした媒体を回す最適なトルクのマグネットをスペックポンプでは使用しています。

NPY-2251-MK 0.5kw モーター    使用マグネットトルク 3.0Nm

CY-4281-MK 2.2kw モーター    使用マグネットトルク  10 Nm

CY-6091-MK 4.0kw モーター    使用マグネットトルク  22 Nm

 

磁石の種類

磁石はサマリウムコバルト磁石というレアアース磁石が使用されており、近年その価値の上昇と共に価格も上がっています。

 

 

メカニカルシール

メカニカルシールには回転環と固定環と呼ばれる2つのリングで構成されています。

この回転環と固定環が隙間ミクロン単位で保持しながら擦りあいます。この回転環と固定環が接触する面を摺動面と呼びます。この摺動面の隙間には媒体が入りメカニカルシールの潤滑の役割を果たします。摺動面が隙間なく密着すれば漏れませんが、固定環や回転環の経年劣化により摺動面から漏れが発生する事があります。メカニカルシールの耐用時間は8000時間ですが、以上の理由により、メカニカルシールの密閉性は完全とは言えません。

またメカニカルシールでは、直接メカニカルシール部と流体が接触するため、使用できる媒体の温度帯もマグネットポンプに比べて限られます。

マグネットポンプでは、このような媒体の温度による影響を受けることがないため広範囲の流体の温度帯で使用でき、またメカニカルシールなどの交換部品もないため、メンテナンスが必要ないポンプになっています。

 

 

カスケードタイプと渦巻きタイプ

ここからはマグネットポンプの中でも使用稼動点によって使い分けできる渦巻きポンプとカスケードポンプについて見ていきます。

 

カスケードポンプ 渦巻ポンプ
流量 低流量(0~200 l/m) 大流量(大体200l/m以上)
圧力 高揚程(30m以上) 低揚程(大体30m以下)
モーター消費電力 右下に落ちる曲線

締め切り時が最も高い消費電力

右上に上がる曲線

バルブ全開時が最も高い消費電力

マグネットポンプというのはこのように媒体を完全に密閉しながら、磁力の力でインペラー部を回転させる事で媒体を輸送するポンプの構造になります。

そしてマグネットポンプ構造を使ったポンプの中では更に大きく分けて2つの遠心ポンプである カスケードポンプタイプと渦巻きポンプタイプに分けることができます。

【ちょっとポイント】 マグネットポンプ → インペラーにはカスケード型と渦巻き型がある

カスケードポンプ
カスケードポンプ
渦巻きポンプ
渦巻きポンプ

カスケードポンプの形はポンプヘッド部が平でフラットな形であることが特徴的です。

渦巻きポンプのヘッド部は丸いお椀のような形をしています。

この形の違いはそれぞれのポンプが持つ性能的特徴の違いによるものです。

カスケードポンプの性能的特徴は、小流量 高圧力を生み出せるポンプです。渦巻きポンプの特徴は 大流量・低圧力を生み出すポンプです。

 

カスケードポンプ
カスケードポンプ 流体の動き
渦巻きポンプ
渦巻きポンプ 流体の動き
            

 

カスケードポンプ

カスケードポンプで使われているインペラー羽根には無数のvaneと呼ばれる小さい突起物が付いています。吸い込み口から入った液体はポンプ内壁に沿って、この無数のVaneによって生み出される強力な渦によって繰り返し加圧されることで、吐き出し口から出るまでに高い圧力を生み出します。インペラーとケーシングの間の溝の深さは狭く、1つ1つの突起物がこの狭い溝の間に無数の渦流を起こして、一周する間にどんどん圧力を高めるのです。

カスケードポンプではバルブを絞ると圧力がどんどん高まっていきます。その性能曲線は渦巻きポンプに比べて傾斜が強いです。

また弁を絞る程に圧力が高まるため、締め切り運転に近くなるほどに流量は上がります。よってカスケードポンプの始動時は弁を開放して起動する事で電流値を抑えて運転します。またNPSHR(必要吸込みヘッド)は渦巻きポンプの場合、流量が上がる程に急激に上昇します。

 

   

■渦巻きポンプ

渦巻きポンプはインペラーをケーシング内で回す事で、遠心力の力で媒体に圧力と速度のエネルギーを与えるポンプです。渦巻きポンプはカスケードポンプとは違い、流量が上がる程(弁を開ける程)に消費電力値が上がります。圧力が上がる程、消費電力値が上がるカスケードポンプとの大きな違いです。

ですので渦巻きポンプの起動時では、なるべく弁を締めて流量が少ない状態で運転をスタートさせる方が、モーターに負担が掛かりません。

渦巻ポンプ 渦巻ポンプ断面

性能曲線もカスケードタイプに対して、傾斜がゆるいカーブになっています。流量に対して圧力差が少ないのが特徴です。

またカスケードポンプよりも圧力を出すことは出来ませんが、大流量の媒体を流すことができます。ポンプ内の写真を見ると、渦巻きポンプは圧力ではなく流量を多く出すための構造に、カスケードポンプはより圧力を出すための構造になっていることが分かります。

キャンドモーターポンプとマグネットポンプの違い

キャンドモーターポンプはポンプとモーターが一体化し、使用媒体が密閉される構造になったポンプです。モーターコイルに流れる電流によって回転磁界が生じることでシャフトが回転します。マグネットポンプよりもコンパクトでシンプルな構造です。

   

キャンドポンプは構造的にシンプルですがモーター内部にポンプヘッドが入っており、媒体とモーターの熱が触れ合うため、マグネットポンプより結露に弱い特徴があります。マグネットポンプはモーターの外にポンプヘッドが外付けされているため、モーター熱の影響を受けません。

 

 

スペックポンプにはキャンドポンプ型のPMモーターポンプ AY-2251-PM-SR / AY-4281-PM-SR があります。PMモーターは固定子に電流を流して、それによって生まれる回転磁界と回転子(永久磁石)が引き合い同じ速度で回るモーターです。

【キャンド型 PM-SR】

       

上図のPMキャンドモーターポンプは、ポンプヘッドがモータ―内に入っています。モーターの回転子の力がそのままポンプヘッドのインペラーに伝わります。

 

【通常 PMポンプ】

  

こちらはマグネット型のPMモーターポンプです。PMモーターの回転子の力によって外部マグネットが回転します。内部マグネットとの磁力によってポンプシャフトが回転し、インペラーも回ります。

マグネットポンプの選定方法

マグネットポンプに限りませんが、ユーザー様からポンプ選定依頼が来た時に聞く項目としては、主に以下の3点になります。

  1. 使用電源( 例 200V 50Hz など)
  2. 使用媒体・使用温度 (例 FC3283 -20℃)
  3. 使用稼働点 (例 40 l/m at 0.3MPa)

1.媒体の物性を知る

マグネットポンプで扱う媒体には様々な物性を持つ媒体があります。

常温の水の場合はケーシングの材質をステンレス製にする等の注意点でよいですが、

  • 密度が1.8(g/cm3)などの重いフロリナートやガルデンなどのフッ素系媒体の場合
  • 低温時に粘度が50cp以上に上がってしまう熱媒油の場合
  • 純度が電機導電率0.1 (mS/m)以下を切るような高純度の純水を用いる場合
  • 同じ水でも180℃以上の高温帯で使用する場合

その時の媒体の物性によって、選定すべきマグネットポンプも変わってきます。

 

密度
フロリナートなどのフッ素系媒体は常温時で密度1.8(g/cm3)に達する水に比べて重い媒体です。ポンプはどんな媒体に対しても、揚程(m)と呼ばれる一定の仕事をします。つまり同じポンプを使用した場合に、水であろうと重いフロリナートであろうと、同じ高さの揚程A(m)だけ持ち上げるという事です。

しかし、ポンプがそれぞれの媒体を同じ揚程A(m)を持ち上げるとしても、密度が異なれば装置回路に掛かってくる圧力(MPa)は異なってきます。結論から言えば、密度に比例して、圧力(MPa)は大きくなってくるのです。フロリナートの場合、水に比べて1.8倍の圧力をポンプは生み出すことになります。またシャフトにかかる力も密度倍になりますので、モーターの軸動力も1.8倍になるため、高比重媒体ではモーターサイズの選定にも気を付けなければなりません。

 

粘度
主に熱媒油やエチレングリコールなどは低温状態ではドロドロとした高粘度の媒体になります。

10cp程度の動粘度ならば、ポンプの稼働に大きな影響は及ぼしませんが、50cp程度の高い動粘度の場合、媒体を送り出すのに高い負荷がポンプとモーターのシャフトに掛かります。

この時にモーターの軸動力は上がりますので、常温スタートの場合は余裕を持った大きめのモーター選定が必要になります。(媒体温度が十分に上がった状態であれば、粘度は下がりますので、高粘度媒体の運転に対しては1つの対策になります。)

また、あまりにも粘度が高くなると、流量や圧力にも影響が出てきますのでこれも注意が必要です。ポンプそれぞれには許容できる粘度の上限値が決まっており、スペックポンプの場合は主に100cpが上限値になっています。

 

 

純水の純度
媒体が純水の場合、その純水が持つ純度によっては、ポンプの構成部品に対策が必要になります。

例えば純度が電機導電率 0.1 (mS/m)以下を切るような高純度の純水を用いる場合、スペックマグネットポンプでは純水仕様のマグネットポンプを選定します。純水を循環させる場合、インペラーやシャフトに対して異常摩擦が起こる場合があります。 

これを防ぐためにスペックのマグネットポンプでは、通常はアルミナ素材のシャフトをSic(炭化ケイ素)に変え、シャフト径も通常より太くして純水の使用に対応しています

 

温度帯
媒体の使用温度もポンプ選定にとって大事な要素です。まずは温度が異なれば、同じ媒体でもその物性は大きく変わります。

熱媒油やエチレングリコールなどは温度が下がれば粘度は高まります。FC3283などのフッ素系媒体の場合は、温度が下がるほどに密度が上がります。これらの粘度や密度の変化は上記で書いたようにポンプの選定にとって大事な要素です。

次に温度自体が変わることで、ポンプヘッドに選ぶ部材も変わってきます。スペックのマグネットポンプの場合、特にインペラーなどに顕著です。

・PEEK材・・・通常温度(0℃~100℃)

・ステンレス材・・低温(-30℃以下)~高温(180℃以上)

また―30℃以下のフッ素系媒体を扱う場合などは、ポンプヘッドに起こる結露対策として、ブラケット部にドライエアーの供給口を設けます。

 

使用電源・インバーターの有無
使用する場所によって、電源(電圧/周波数)は変わってきます。周波数が変われば、ポンプが出す能力も変わってきますので、使用電源(電圧/周波数)を抑えることは重要です。

スペックのIEモーターは、200V帯のΔ結線、400V帯のY結線の両方が使えるマルチモーターが特徴ですが、使用する電圧を抑えておくことは、モーター過負荷のラインをチェックする点でも重要になりますので、必ず抑えておきましょう。

またユーザーによってはインバーターで周波数を調整し、回転数を変えているという方々もいます。インバーターで周波数を変える事ができれば、モーターサイズなどの兼ね合いもありますが、通常の50-60Hzでは出せなかった範囲の能力も使える可能性があります。

スペックのIEモーターは45~67hz、PMモーターはVFDに特化したモーターになりますので、0~200Hzまでの可変が可能です。

 

稼動点を決定する
液体ポンプの選定で最も大事な要素が、この稼動点(圧力・流量)になります。モーターから得た運動エネルギーがシャフトを通じてインペラーに伝わり、インペラーは回転しながら媒体に一定の圧力を与えながら吐き出します。

つまり必要な圧力(MPa)と 必要な流量(l/m)が決まれば、その稼動点を達成できるポンプの選定に移れるのです。高い圧力・大きな流量を移送したければ、それなりに大型のポンプが必要になってきます。媒体の特性・使用温度を把握した後は、使用稼動点を決定する事でポンプの選定に入ります。

 

 

配管回路を把握する
最後にポンプが組み込まれている装置の回路を把握することも大事な要素です。

回路が圧力が逃げることのないような閉回路なのか、それともタンクなどが一部で大気に開放されているような開回路かによって、必要なNPSHAの計算も変わってきます。また大流量をバイパス回路で逃がすことができる設計かどうかも、モーターサイズの選定に影響してきます。

 

 

 

ポンプ性能曲線の読み方

ポンプの性能曲線には、流量と圧力の2つが示されています。詳細なデータでは、その際の軸動力(モーター消費電力)・NPSHR必要吸込みヘッド・ポンプ効率なども記されています。この性能曲線はあくまでポンプ単体が行う仕事を示しています。ポンプの先にあるバルブ弁によって失われる圧力などは含まれていません。ポンプが作り出す圧力、ポンプが送り出す流量がこの性能曲線には記されています。

ただしこの性能曲線だけではポンプの稼働点は決まりません。ポンプの稼働点(圧力・流量)を決めるのは、ポンプの先にあるシステムが持つ抵抗値です。システム抵抗値の曲線との交点により、ポンプの稼働点が1点に決まります。システム内のバルブを閉めることによりシステム抵抗値が上がれば、その曲線は左に寄ります。すると、ポンプの稼働点は流量が下がり、圧力が高くなる交点に移動します。反対にバルブを開放すれば、システム曲線は右に寄り、流量が上がり圧力は下がる交点に移動します。

 

ポンプの稼働点を決めるのはポンプ自身ではありません。ポンプは常に与えられた回転数で100%で仕事を行うだけです。そのポンプの先のシステム抵抗が、ポンプの稼働点を決定しています。

 

ポンプ流量・電流値とシステム抵抗値の関係

ここではスペックポンプ主力製品のカスケードインペラータイプのポンプを元に説明します。カスケードタイプのポンプは渦巻型インペラーのポンプとは異なり、流量を上げるほど(バルブを開けるほど)に電流値は下がっていきます。反対にバルブやシステム抵抗値の上昇により流量が絞られるほどに電流値は上がっていきます。

先程も説明しましたが、ポンプのパフォーマンスはポンプ自身が決めるのではなくポンプが組み込まれているシステム回路全体の抵抗値によって決められます。

例えば上の図では、バルブや熱交換器を通る配管などがポンプが流そうとする仕事に対しての抵抗になります。バルブや熱交換器などの数が増えるほどに回路全体のシステム抵抗値は上がりますので、その分だけポンプは十分な圧力を持って媒体を送り出さなければ十分な流量を熱交換器などに送りこむことができません。

 

 

上のグラフにある黄緑色の曲線が回路のシステム抵抗値を示します。この曲線とポンプの性能曲線である赤い直線(流量と圧力)が交差する点がポンプの稼動点に決まります。

ここでは黄色い点の【42 l/m at 22m】というのが稼動点です。そしてその時の電流値は青い直線との交点である【5.3A】付近になります。そしてシステム抵抗値が増す、つまりバルブや熱交換器が増えたり、配管が細いものになったりL字型エルボが増えたりすると、回路全体のシステム抵抗値は増します。

下の図のように黄緑色のシステム抵抗値の曲線は左側へ傾きの強い曲線に変わります。

 

システム抵抗値が増す要因

・バルブや熱交換器などの流量の抵抗になるものが増える

・配管が細くなる

・L字型のパイプ部分が増える

何らかの要因でシステム抵抗値が増すと、上図のように黄緑色のシステム曲線は傾きの強い左側に寄ったものに変わります。

ここで注目したいのがポンプの出す流量とその時の電流値の関係です。回路の抵抗が増えたので当然ポンプが媒体を流しにくい状況になっています。具体的に数値で見るとシステム抵抗曲線と赤いポンプ性能曲線が交わる黄色い点がポンプの稼動点になり、【25l/m at 30m】になります。先程と同じ回転数のポンプであるにも関わらず、【42 l/m at 22m】→【25l/m at 30m】へと流量は減りました。(圧力は抵抗が増えたぶん上がっています。) その時の電流値は【5.6A】です。システム抵抗が上がる前は5.3Aでしたので、電流値もシステム抵抗値の上昇と共に上がっています。つまり、回路全体がポンプにとって媒体を流しにくい状態に変わったのでポンプが出す流量は減り、またその時の電流値は上がったのです。

実際の現場ではシステム回路に流量計のみを取り付ける場合が多いですが(圧力計は付けないケース)、流量とその時の電流値のデータを取る事ができれば、そこから大体のポンプが出す圧力を求める事が可能です。

 

流量計も圧力計も取り付けていないというケースではあまり正確ではありませんが、ポンプの性能曲線と稼動中のポンプの電流値を取る事ができれば、その時の大体のポンプの稼動点(流量と圧力)を性能曲線から予測することもできます。

電流値が定格ギリギリの値になっているとするならば、システム抵抗値とポンプ性能曲線の交点がかなり左側に寄っているという事ですので、流量はかなり絞られていると考えられます。またポンプの仕事量がかなり大きい状態とも言えます。システムの抵抗値がかなり大きい状態です。反対にその時の電流値が低い状態を示しているならば、交点は右側に寄っているという事ですので、流量は十分に出ていると考えられます。ポンプの仕事量は適正と言えるでしょう。システム抵抗値も小さい状態です。

 

しかしケースによっては電流値だけを見て判断を誤ってしまう事もあります。

例えばポンプ内に異物が挟まっている場合、モーターへの負荷は高くなり電流値はかなり上がっているでしょう。これはシステム抵抗値が大きいのではなくポンプ自体に問題がある状態です。反対に電流値が極端に低い場合にポンプの流量はかなり出ていると考えたいですが、空運転というインペラ部に流体がない状態、流体に空気が混じっている状態では電流値は低い状態になります。この状態のときには流量は出ていませんので電流値だけで判断することができません。

ここではあくまでカスケードタイプでのインペラーの説明です。渦巻型インペラーの場合は消費電力の動きが反対になりますので注意してください。

 

【インペラータイプ別の電流値動き】

カスケードインペラー(圧力型):流量が絞られるほどに消費電力(電流値)は上がっていく。そのためスタート時はバルブ全開にして消費電力を抑えてスタートさせる。

渦巻きインペラー(流量型):流量が出る程に消費電力(電流値)は上がっていく。そのためスタート時はバルブを絞る閉塞運転で消費電力を抑えてスタートさせる。

なぜこのような違いが起きるのかと言うと、カスケードインペラータイプはその構造上、密閉された圧力がどんどん上がるような構造になっています。反対に渦巻型インペラーはケーシング内は開通しており圧力よりも流量が多く出るための構造になっています。

 

 

 

ポンプ吐き出し口とバルブによる圧損の見方

ポンプの性能曲線はあくまでポンプ吐き出し口における能力を示しています。ポンプ吐き出し口の能力とはそのポンプが生み出す差圧と送り出している流量の事です。従来のポンプの能力制御はポンプ吐き出し口の後に付けるバルブ開閉による調整が主流でした

しかしバルブを通過する際にポンプから送り出される圧力は損失しています。これは性能曲線の見方についても同じで、システム抵抗曲線とポンプ性能曲線との交点はあくまでポンプ吐き出し口の能力になります。実際の回路ではバルブ通過後の流量や圧力が重要になってきますので、下図の性能曲線の青い交点つまりポンプ吐き出し口の能力だけを見ても不十分になります。

下記の性能曲線で見るとバルブ通過後の圧力は赤い点になります。バルブで流量を絞るとここまで液体に与えられる圧力は落ちるのです。

このバルブによる失われた圧力損失分が無駄に消費されてしまったエネルギー分と言えます。この無駄に消費されたエネルギーはそのままポンプ消費電力の浪費となります。

 

 

 

 

バルブ制御が要らないPMポンプという回転数制御

スペックポンプにはPMポンプというVFD駆動タイプのポンプがあります。

回転数1000~4000回転に自由に変える事で幅広い能力をカバーできる省エネにも適したポンプです。幅広い回転数でポンプを運転できるという事は、これまでのようなバルブによる制御が要らなくなるという事です。これまでのバルブによる圧力損失がPMポンプのような回転数制御のポンプの場合には起きなくなります。

 

 

下記の曲線はPMポンプの1000~4000回転の曲線を示しています。黄緑色のシステム抵抗曲線との交点は最大能力になる4000回転時には青い点になり、もう少し流量を落としたい場合はバルブを絞る代わりに3000回転まで落とし赤い点にします。この時にはバルブがないためにバルブによる圧力損失は起きていません。

バルブによりエネルギーロスが起きないため、PMポンプの消費電力は常に必要最小に留めておくことが可能になります。

 

 

キャビテーションのメカニズム

キャビテーションとはポンプ内の圧力が低下することにより起こる媒体の沸騰現象(液体からガスへ)の事です。キャビテーションにより発生した気泡により、インペラーに繰り返し水撃作用を及ぼし、ポンプの能力を低下させます。

キャビテーションは常温でも起こります。ポンプ内部ではインペラーが回転する際に、圧力が高い部分と低い部分に分かれます。特にインペラーの中心部は圧力が低下しやすいです。これはどのポンプでも持つ現象で、この圧力低下分をそのポンプが持つNPSHR必要吸込みヘッドと言います。NPSHRとは、この圧力分だけ減少すると、このポンプはキャビテーションを起こしますよ、という値です。キャビテーションを防ぐにはこのポンプ内の圧力低下分であるNPSHRよりも、1.3倍以上のポンプに対する押し込み圧力NPSHAを持つべきだとされています。この押し込み圧力が十分に取れていれば、それだけキャビテーションは起こりにくくなります。逆の考えでは、NPSHR 必要吸込みヘッドが小さいポンプはそれだけ優秀なポンプと言えるでしょう。

 

常温でもキャビテーションが起こるという理由は、液体が持つ飽和蒸気圧に関係しています。例えば、水は地上1013hpa時に100℃で沸騰を起こしますが、富士山の頂上付近に登り大気圧が下がった状態であれば、87℃‐630hpaでお湯は沸騰します。ポンプ内でも同じようにNPSHR分だけ圧力が低下すれば、常温に近い状態でもキャビテーションが起こることがあります。また沸騰ギリギリの高温で運転している媒体などは、それだけでキャビテーションに近い状態でポンプを動かしていると言えます。

 

NPSHとは何か?

ポンプの運転にはNPSHR(必要吸込みヘッド)とNPSHA(有効吸込みヘッド)という2つの値が存在します。NPSHR(必要吸込みヘッド)というのは、そのポンプが持つ固有の値で、ポンプ内で失われる圧力を言います。吐き出す流量が増える程にこのNPSHRの値は増していき、媒体の飽和蒸気圧以下まで下がってしまうとキャビテーションが起こります。NPSHR(必要吸込みヘッド)が低いポンプというのは、それだけキャビテーションを起こしにくいポンプになりますので、優秀なポンプと言えます。

NPSHA(有効吸込みヘッド)は、そのポンプで使われているシステムに関係する値です。ポンプに対してどれだけの押し込み圧力があるかを示す値で、例えばポンプから高さ10mの位置にあるタンクから水をポンプ吸い込み側に送っているとしたならば、NPSHA(有効吸込みヘッド)10mを確保していると言えます。この他に媒体の密度や、配管の抵抗なども関係し、最終的なNPSHAが決定します。

NPSHA(有効吸込みヘッド)が十分に取れていれば、たとえNPSHR(必要吸込みヘッド)で圧力が失われていても、キャビテーションは起こりません。反対にNPSHAが小さければ、それだけポンプのキャビテーションのリスクは上がります。安全なポンプ運転には NPSHA ≧ 1.3 x  NPSHR これだけのNPSHA(有効吸込みヘッド)を取る必要があるとされています。

 

ポンプの選定方法

ポンプを選定するには、使用電源(例えば200V 50Hz)、使用媒体(水、油、ガルデンなど)、使用温度(-40℃~100℃など)、稼動点(30l/m at 30m など)が必要な情報となります。このほかにもインバーターの使用などの情報があれば、より最適なポンプを選定できます。

  1. 使用電源(〇V 〇Hz)
  2. 使用媒体
  3. 使用温度帯
  4. 媒体の密度・粘度
  5. 稼働点(〇l/m at 〇m)
  6. インバーター使用の有無

 

モーターサイズと能力の見方

上の性能曲線では100l/mのときに揚程は30mです。ではその時のモーター軸動力を下にずらして見てみると約2.0kwになっています。この稼働点で使うならば2.8kwでカバーできることになります。では2.8kwモーターではどの流量までカバーできるでしょうか。流量を絞っていき、50l/mの時には揚程60mです。このときの軸動力を下にずらして見てみるとちょうど2.8kwになっています。つまり50l/m以上が2.8kwモーターでカバーできるポイントになります。50l/mより下の流量では2.8kw以上のモーターが必要になります。これがモーターサイズと能力の見方です。

あくまでモーターサイズ(2.8kw, 4.0kw)はそのポンプヘッドが出せる能力の範囲を変えるだけで、ポンプの能力自体を変えることはできません。ポンプの能力を変えられるのは、ポンプヘッド(インペラー)だけです。いくら大きなモーターを付けようが、ポンプヘッド(インペラー)が大流量・高圧力使用になっていなければ、能力はでません。

 

 

ポンプにおける揚程(m)と圧力(bar/MPa)の違いは何?

 

そのポンプが水を何mの高さまで持ち上げることのできるかを示す値が揚程(m)です。揚程30mのポンプと言えば、水を30mの高さまで持ち上げる事のできるポンプです。ではポンプにおける圧力(bar/MPa)とは何でしょうか? これは圧力なので、単位面積あたりにかかる力です。水で揚程10mの仕事をするポンプは、0.1MPaの圧力を生み出すポンプと同じです。これは1barの圧力を生み出すポンプとも言えます。

ではポンプが送り出す媒体が、水(密度 1.0g/cm3) から 油 (密度 0.8g/cm3)に変わった場合はどうでしょうか。密度は単位体積あたりの重さを示す値ですので、油は水よりも軽い媒体と言えます。その油を10m持ち上げるのと、水を10m持ち上げるには、同じ10mでも掛かる圧力が異なります。ポンプは常に100%の力で回転していますので、重さの違う水も油も等しく10m持ち上げようとします。結果的に10mの高さまで持ち上げますが、同じポンプで考えると、その時に掛かる圧力は水0.1MPaに対し、油は0.08MPaしかありません。密度が少ない油を送り出しているからです。またその時のモーター軸動力も、ポンプは水より軽い油を持ち上げているので、水に掛かる消費電力の0.8倍に減っています。逆に1.8g/cm3などの密度の大きいフッ素系媒体などを送り出すときは、フッ素系媒体1.8MPaの大きな圧力が掛かります。重い媒体を送り出しているからです。その時の軸動力も1.8倍に上がっています。

 

 

 

媒体の密度が変わればポンプ圧力も変わる

多くのポンプのトラブルは、全ての媒体はどれも同じであるという誤解から生じています。どんな媒体で何度で使用し、その時の密度と動粘度はどの位かは必ず聞かなくてはなりません。密度が増えれば、ポンプが吐き出す媒体圧力は高まり、モーターの軸動力も上がります。

 

同じ圧力0.35MPaを示す同一のポンプがあるとします。媒体はそれぞれ密度の重いフロリナート、水、密度の低いオイル系とした場合、最も媒体の高さが上がるのは密度の軽いオイル系(=43m)で次に水(=35m)、最後に密度の重いフロリナート(=19m)になります。

ポンプの複数台運転のメリット

1台の大型ポンプで運転するよりも、複数の小型ポンプを連動させて運転した方がコスト的にもメリットがある場合があります。1台のポンプで高流量・高圧力を賄おうとすると、それ専用の特別なポンプを使用する事になり複数の小型ポンプを使用した方が安く上がる場合があります。

直列運転では、それぞれのポンプを同流量流れることでそれぞれのポンプの圧力が加算されます。並列運転ではそれぞれのポンプが同圧力の際に最も効率的に合計の流量の増加に貢献してくれます。サイズの異なるポンプを並列運転で使用すると、この圧力差の問題が生じやすくなるため運転に問題がでる事があります。

 

 

システム抵抗値と複数台運転の関係

1台からポンプを追加していけば合計の流量は上がりますがその上がり方はシステム抵抗値に寄ります。

バルブ全開などのシステム抵抗値が少ないフラットな曲線ではポンプを直列運転するよりも、並列運転の方が流量は上がります。逆にバルブが絞られているシステム抵抗値が高い傾斜のある曲線では直列運転がより高い流量で高圧力を出してくれます。システム抵抗値が高い配管の場合、並列運転では1台のポンプと2台並列運転でほとんど流量が変わらないこともあります。

 

 

ポンプ吸い込み側の考察

多くのポンプの配管システムの問題は吸い込み側に集中しています。
ポンプは液体を吸い込みませんので、システム全体で液体がポンプ内部のインペラーまで到達させる必要があります。吸い込み側の配管に問題があると、液体がうまくポンプ内部に引き入れる事ができません。ここでは理想的なポンプの吸い込み側配管について見ていきます。

①吸い込み側の直管はポンプ吸い込み系d(mm)の5~10倍は取る

吸い込み側の直管長さをポンプ吸い込み系d(mm)の5 から10倍取る理由はポンプに流れ込む液体の流れを整えるためです。この長さが短いと流れに乱れが出来るため、うまくインペラーに液体が流れ込みません。

 

②吸い込み側の直管は出来るだけ短く

①と矛盾するようですが、吸い込み側の直管系はそれでもシステム抵抗値の観点から出来るだけ短く取ることが理想です。

 

③L字配管は出来るだけ少なく

L字配管やバルブはシステムの抵抗値を増やす要因になります。これは⑤NPSHa(有効吸い込みヘッド)を減らす要因にもなります。

 

 

④流速が速い時は直管はd x 5~10を確保する

流れ込む液体の流速が速いと、流れに渦などの乱れが生じやすくなります。そのために出来るだけ直管の長さを取り、流れを整えてあげます。

 

⑤NPSHa(有効吸い込みヘッド)は出来るだけ大きく取る

NPSHa(有効吸い込みヘッド)はポンプに押し込む圧力の大きさです。これが十分にあればポンプのキャビテーションのトラブルが少なくなります。

 

スペック社 マグネットポンプを選ぶ理由

 

【-100℃から+350℃まで幅広い温度帯】

スペック社のマグネットポンプを選ぶ理由-100℃から+350℃まで

スペック社のマグネットポンプの利点は他にもその幅広い温度帯にあります。最高温度は熱媒油で350℃、水で220℃まで可能であり、主にプラスチック産業で広く使われています。また低温分野では半導体業界を始めとして、極低温の使用が進んでいます。

スペック社ではこれに対応すべく、マグネットポンプは低温ではフッ素系媒体-100℃まで使用可能であり、半導体向けチラー業界にに数多く採用されています。

幅広い温帯域のマグネットポンプ

【装置内にポンプ最小スペースを提供】

また国内他社のマグネットポンプに比べて、スペック社のマグネットポンプはそのコンパクトサイズに関わらず高い圧力が出せるのも特徴です。

近年では装置の小型化が進んでおり、搭載されるポンプのスペースも限られてきています。その中でスペックのマグネットポンプは最小のモーターサイズで十分な能力(圧力・流量)が出せるという評価を頂いております。

特に圧力においては既定モーターサイズでは国内メーカーが出せない圧力を出す事ができます。最新のPMモーターポンプにおいては更にこの小型化を進めることに成功し、ユーザーが求めるポンプの最小スペースという要求に応えることが出来ています。

 

ポンプ最小スペースのマグネットポンプ

 

【脈動を起こさない】

スペックポンプは脈動を起こさないので、正確性が求められる装置の温調などに適しています。

脈動を起こさないマグネットポンプ

 

【CE規格  UL規格 GB規格 安全増ATEX など取得】

CE規格UL規格GB規格取得のマグネットポンプ

スペック社のマグネットポンプが選ばれている理由はポンプ能力に関してだけではありません。

海外に製品輸出するメーカーにとっては、欧州のCE規格・アメリカのUL規格、そして著しい成長を見せている中国市場に必要なGB規格などは抑えておかなければならないポイントです。これらの各種規格は、取得するためにコスト・時間などが非常に掛かるものです。しかしスペックでは、CE規格は全製品に標準で付いており、UL規格 GB規格の取得も実績と経験が多いため問題ございません。 また特に安全を要する現場には安全増ATEXモーターのポンプが必要になります。この安全増規格についてもスペックのマグネットポンプは数多くの実績があるため、他社メーカーよりも最小のコストで取得することが可能です。

以上のポイントが数多くあるマグネットポンプの中でも、スペック社のマグネットポンプが数多くのユーザーによって選ばれている理由になります。

 

標準型マグネットポンプ

【スタンダートタイプ マグネットポンプ】

水 最高140℃  油 最高180℃   

フッ素系媒体(フロリナート ガルデン)-60℃~200℃

  • マイナス100℃から対応可能
  • 高比重媒体(たとえば比重1.8)にも対応
  • マグネット駆動シールレスのため液漏れがありません。
  • CEマーク(ヨーロッパ規格)対応ポンプ。
  • ご要望によりUL規格モーターも搭載可能。
  • 小流量から大流量まで幅広く対応可能です。
  • コンパクト設計ポンプです。

高温油型マグネットポンプ

【高温油タイプマグネットポンプ  TOEシリーズ】 油 最高350℃まで可能

  • 350℃まで対応
  • マグネット駆動式シールレスポンプです。高温媒体の漏れがありません
  • CEマーク(ヨーロッパ規格対応)
  • 小流量5リッター/分から大流量1,000リッター/分以上までの機種を取り揃えています。
  • 温度調節機、ボイラーなど

 

高温水型マグネットポンプ

【高温水マグネットポンプタイプ  HTシリーズ】

高温水 最高180℃ 200℃ 220℃から選択可

・プラスチック成型業界で注目を集めている、高温水金型温調に対応した製品

・ポンプ耐圧を増やし、加圧ポンプとの組み合わせで180度 220度使用を実現

能力からマグネットポンプを探す

グラフ

NPY-2251-MK CY-4281-MK CY-7091-MK CY-6091-MK TOE-MA
 
PAGE TOP